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Abstract

Malaria is a geographically widespread infectious disease that is well known to be af-
fected by climate variability at both seasonal and interannual timescales. In an effort
to identify climatic factors that impact malaria dynamics, there has been considerable
research focused on the development of appropriate disease models for malaria trans-
mission and their consideration alongside climatic datasets. These analyses have fo-
cused largely on variation in temperature and rainfall as direct climatic drivers of malaria
dynamics. Here, we further these efforts by considering additionally the role that soil
water content may play in driving malaria incidence. Specifically, we hypothesize that
hydro-climatic variability should be an important factor in controlling the availability of
mosquito habitats, thereby governing mosquito growth rates. To test this hypothesis,
we reduce a nonlinear eco-hydrologic model to a simple linear model through a series
of consecutive assumptions and apply this model to malaria incidence data from three
South African provinces. Despite the assumptions made in the reduction of the model,
we show that soil water content can account for a significant portion of malaria’s case
variability beyond its seasonal patterns, whereas neither temperature nor rainfall alone
can do so. Future work should therefore consider soil water content as a simple and
computable variable for incorporation into climate-driven disease models of malaria
and other vector-borne infectious diseases.

1 Introduction

The World Health Organization estimates that 250 million clinical episodes of malaria
occur annually, resulting in at least one million disease-associated deaths (World Health
Organization, 2008). Malaria incidence is especially high in developing countries,
where it is a leading cause of morbidity and mortality, in particular among children and
pregnant women. Since the pioneering work by Ross (1910) and MacDonald (1957),
progress in understanding malaria dynamics has been made through the development
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of mathematical models and their statistical inference with incidence data (e.g. Bailey,
1982; Hay et al., 2002; Depinay et al., 2004; Zhou et al., 2004; Pascual et al., 2008;
Chaves et al., 2012; Bhadra, 2011; Laneri et al., 2010, among others). A subset of
these models has considered the role that external forcing plays in generating patterns
of seasonal and interannual case variability. Despite these advances, early-warning
systems of malaria outbreaks still only have limited predictability (and thereby efficacy),
and the factors contributing to malaria case variability still require more thorough inves-
tigation (Pascual et al., 2008; Craig et al., 2004a,b).

Two climatic variables that have long been known to influence malaria’s seasonal and
interannual dynamics are temperature and rainfall. Temperature is known to affect the
development time of mosquito larvae, the probability of mosquito survival, and the de-
velopment time of the malaria parasite Plasmodium falciparum in infected mosquitoes
(Bayoh and Lindsay, 2003; Hoshen and Morse, 2004). Rainfall is hypothesized to affect
malaria incidence through the creation of high-quality mosquito breeding sites during
wet periods and the reduction of their availability during droughts (Patz et al., 1998).
Although a moderate level of rainfall appears to have a positive effect on mosquito re-
cruitment, intense rainfall events may destroy mosquito habitats and thereby reduce
malaria incidence shortly following their occurrence (Briet et al., 2008).

Due to the multiple effects of temperature and rainfall on the malaria parasite and
its mosquito vector, previous work linking malaria incidence to climate forcing has fre-
quently focused on the direct impacts of temperature and rainfall on the risk of malaria
(Craig et al., 1999; Lindasy et al., 2000). Several studies have found a correlation be-
tween malaria incidence and either minimum, mean or maximum temperatures (Hay et
al., 2002; Zhou et al., 2004; Devi and Jauhar, 2007; Gomez-Elipe et al., 2007), while
others have instead considered the effects of diurnal temperature fluctuations (Paai-
jmans et al., 2009) and sea-surface temperatures (Jury and Kanemba, 2007) on the
disease. At regional spatial scales, malaria incidence has been correlated with rainfall
amounts (Pascual et al., 2008; Craig et al., 2004a; Hay et al., 2001), interestingly with
time lags of several months. These latter findings hint at the fundamental role that
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soil water content dynamics may play for malaria dynamics. Recent work has moved
in this direction, with the role of surface hydrology being more fully recognized and
explicitly included in mechanistic models. Some of these models have focused on wa-
ter level fluctuations in small reservoirs and the effect of these fluctuations on malaria
prevalence (Porphyre et al., 2005; Shaman et al., 2002). In an effort to predict the
magnitude of malaria cases, several statistical models have also considered vegetation
density (which depends on soil water availability) and distances between water bodies
and humans populations (Gomez-Elipe et al., 2007; Kleinschmidt et al., 2001). Finally,
detailed models linking hydrology with entomology have recently been proposed and
tested for a semi-arid region (Bomblies et al., 2008; Yamana et al., 2011). The role of
hydrologic processes in the dynamics of other vector-borne infectious diseases is also
starting to become more fully recognized (Bertuzzo et al., 2008).

Motivated by these previous efforts, here we test the hypothesis that soil water con-
tent is an important driver of malaria dynamics, with an application of an eco-hydrologic
model to malaria incidence data from three South African provinces (Fig. 1). Although
the eco-hydrologic model we derive makes a series of simplifying assumptions, our re-
sults show that variability in soil water content is significantly correlated with variability
in malaria incidence, whereas neither rainfall nor temperature alone show this corre-
lation (beyond their seasonal associations). Future work should therefore focus on
soil water content as a simple and computable environmental variable that can be in-
corporated into more mechanistic models of malaria transmission that include internal
feedbacks.

2 Materials and methods

2.1 Malaria data

Monthly malaria incidence data over the period July 1996—March 2007 were obtained
from the South African Department of Health (http://www.health-e.org.za/resources/
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statistics.php, last access: February 2012) for three South African provinces: Limpopo,
Mpumalanga and KwaZulu-Natal (Fig. 2). Implementation of malaria control strate-
gies, mainly due to the Lumbobo Spatial Development Initiative, resulted in a steady
decrease in the number of reported malaria cases in the provinces of Mpumalanga
and Limpopo starting in 2005 and in the province of KwaZulu-Natal starting in 2002.
To neglect this transient and consider a time series driven only by climate variability,
we therefore limited our analysis to incidence data before June 2005 for Mpumalanga
and Limpopo and before July 2001 for KwaZulu-Natal (Fig. 2).

2.2 Climate data

The meteorological data consisted of daily rainfall and daily minimum and maximum
temperature records collected from weather stations managed by the South African
Weather Service. We restricted our analysis to datasets with less than 20 % miss-
ing meteorological data that were obtained from stations in areas with high population
densities and intermediate to high malaria risk (Fig. 1). For each province for which we
had malaria data, spatially-integrated daily time series were first obtained by averaging
across the selected weather stations. Finally, to have the same temporal resolution
for the malaria and climate datasets, we estimated monthly meteorological data from
these spatially-integrated daily time series (Fig. 2). A preliminary inspection of monthly
malaria data alongside the meteorological data highlighted different responses to tem-
perature and rainfall. We observed that daily maximum temperatures above 39°C
tended to be followed by a decrease in the number of malaria cases, most likely re-
sulting from the effect of heat-stress on mosquitoes (Craig et al., 1999). Periods of
moderate to high precipitation had a positive and delayed effect on malaria incidence,
presumably because of the increased availability of mosquito breeding sites (Wyse et
al., 2007). The few instances of anomalously high precipitation were followed by a rapid
decrease in malaria incidence, presumably a result of habitat destruction for mosquito
vectors (Briet et al., 2008).
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2.3 Model description

We assessed the association between climatic drivers and malaria cases in three
ways: (i) standard linear regression between climate anomalies and malaria case anoma-
lies, at time lags of zero and one month; (ii) an eco-hydrologic model of malaria dynam-
ics; and (iii) a transfer function model accounting for delayed climate effects on malaria
dynamics. The first approach (i) provided a baseline to quantify the improvement of
models (ii) and (iii). We choose not to consider the maximum temperature data in
depth as an explanatory variable for malaria cases, as it did not have significant ex-
planatory power in preliminary analysis. Instead, we focused our analysis on minimum
temperature and precipitation anomalies.

The full eco-hydrologic model explicitly coupled a model of malaria transmission dy-
namics with a hydrologic model of soil water content. Through a series of assump-
tions, detailed below, this full eco-hydrologic model was reduced to a minimal, linear
model that describes the expected relationship between precipitation levels in previous
months and current malaria incidence.

The full model of malaria transmission is given by the following equations, where M
is the population size of the Anopheles mosquito vector, M, is the population size of
infected mosquitoes, Hg is the population size of susceptible individuals, and H, is the
population size of infected individuals (Ross, 1910; Porphyre et al., 2005; Kermack and
McKendrick, 1927; Smith and McKenzie, 2004; McCallum et al., 2001):

%t(t) = Wolw(t), T()IM(t —1y) - EM(2) (1)
%;(t) = aH|(t —1)M(t - 1)) - SM(t) ()
dHs(t
dst( ) UHtor +VIHror — Hs(t) = H\(t)] +
H
oM 22Y g @)
Hror
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dH(t)

dt
The number of individuals recovered and immune to malaria infection at time ¢ is not
explicitly modeled, but given by Hrqr — Hg — H, where Hyqr is the constant total host
population size.

The dynamics of the mosquito population, given by Eq. (1), are modeled by a delay
differential equation where ¥, is the mosquito growth rate (a function of soil moisture,
w, and temperature, T), % (~10days) is the average lifespan of a mosquito, and 17y,
(~10days) is the time delay between oviposition and mosquito emergence (Chitnis
et al., 2008). The number of infected mosquitoes, governed by the dynamics given
in Eq. (2), increases through feeding on infected hosts at a rate a, with 7, being a
time delay representing the incubation period for malaria parasites, and decrease with
background mortality at a rate §. The number of susceptible hosts increases with births
(4H7o7) and loss of immunity (v (Hrot — Hs — H,)) and decreases with background mor-
tality (uHg) and malaria transmission via infected mosquitoes (%, Eq. 3). Finally,
the number of infected hosts increases with transmission and decreases with back-
ground mortality and recovery from infection (0H,).

Soil water content, w, is described by a soil-moisture and surface-water balance
equation (Wyse et al., 2007; Porporato et al., 2004):

dw(t)

dt
where P(t) is rainfall at time ¢, and mw(t) is a linearized soil water loss function ac-
counting for plant transpiration, surface evaporation, and deep infiltration. The use of
this function is justified by the large spatial scale (Fig. 1) and relatively low temporal
resolution (~1 month) we are considering. In contrast to classical models of soil water
content, we chose a form for Eq. (5) that does not saturate, so as to account for both
soil and surface water storage.

Ha(t
- rzolwl(n%;) — (0+U)H(t) (4)

= P(t) - mw(t) (5)
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— Assumption 1: as a first approximation, we assume that the fraction of the host

population that is susceptible to infection, 7=, is relatively stable (i.e. H, << Hrgr)-
With this assumption, the dynamics in the number of infected individuals are sim-
plified to:

dH(t)

= M (£) = (0+ (D), ©)

Hs
where n = Mo Frgr

Assumption 2: because our datasets are resolved only at the monthly time scale,
we assume that both the time delay between mosquito oviposition and emer-
gence, and the incubation period, can be neglected. These assumptions yield:

am
PO~ wiwie). Tem0 - oM(0), )
D — anmeymte)-omn ®)

Assumption 3a: in the case that climate is the only limiting factor to mosquito
emergence, we can re-write Eq. (7) as:

aM(t)

— = YWt T(0)-6M(2). (©)
Assumption 3b: alternatively, in the case that the mosquito population exhibits
logistic growth, with climate determining its carrying capacity, we can re-write

Eq. (7) as

%=,[1

T (10)

ﬁ T(f ]
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— Assumption 4: we assume that the total mosquito density is approximately in equi-

librium at the monthly time scale, on the ground that both the soil water content
(with a mean transit time of 1-3 months) and the size of the infected population
(transit time ~10months) fluctuate at longer time scales than mosquito density
(transit time <1 month) (Chitnis et al., 2008). With Assumption 3a in place, this
yields:

iw(@). 701

M(t) = 5

(11)
Alternatively, with Assumption 3b in place, this yields:
M(t) = Kw(t),T (). (12)

Assumption 5: since we are considering a large geographic area where spatial
heterogeneity likely weakens the nonlinear nature of the interaction between in-
fected humans and mosquitoes (as shown for other systems, see e.g. Katul et al.,
2007b), we also assume that the density of infected mosquitoes is proportional to
the total mosquito density: M|(z‘) yM(z‘) With these assumptions, M|(t) is given
by:

V‘V[WKTXTTTH]

Mi(t)=y——

(13)
and
Mi(t) = yKw(t).T(t)] (14)

from Egs. (11) and (12), respectively. Equations (13) and (14), together with
Eq. (5) and (6) lead to a system of two coupled linear equations driven by rainfall

2839

Jadeq uoissnosiq | Jadeq uoissnosiq | J4edeq uoissnosiq | Jaded uoissnosi(

HESSD
9, 2831-2854, 2012

Eco-hydrology and
malaria outbreaks

E. Montosi et al.

: “““ I““


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/2831/2012/hessd-9-2831-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/2831/2012/hessd-9-2831-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

15

20

P, water content w, and temperature T:

dw(t)
— = PO -mw() (15)
dH,(t)

SPTH = nyelw(t). T(t)] - (v+u)H(t) (16)

where e[w(t),T(t)] is given by either W[w(t),T ()] or K[w(t),T (t)]. Equation (16)
predicts a rapid growth in the number of infected individuals when climate is fa-
vorable for mosquito emergence (large ¢) or exponential decay in the number of
infected individuals when climate is unfavorable (¢ ~ 0). At the time scale of a
month, malaria incidence A is just the first term of Eq. (16), A(f) = nye[w(t),T (t)].

— Assumption 6: if we assume that the effect of the soil water content and tempera-
ture on mosquito growth rate is linear, we have A(t) = a+ bw(t) + cT ().

Under these assumptions, the minimalist model given by Eqgs. (15) and (16) is linear
in both the state variables and the climatic factors, allowing us to remove the seasonal
component of these dynamics, leaving the dynamics themselves in terms of anomalies
from the seasonal averages. This solution is appropriate because the disease and
climate time series are both strongly seasonal, therefore hindering the identification of
how climate variability drives disease dynamics on an interannual time scale (Hay et
al., 2000; Briet et al., 2008). Seasonal averages for malaria case incidence and for
precipitation levels are shown in the insets of (Fig. 2) for each of the three provinces.

Indicating the monthly anomalies with prime signs and the seasonal monthly aver-
ages with an overbar, we have P(t) =P +P'(t), A(t)= A+ A'(t) and H(t) = H + H'(t). Be-
cause the monthly temperature anomalies are negligible in comparison to the anoma-
lies in the hydrologic variables (the maximum standard deviation of the anomalies of
temperature is 0.84, recorded for the province of Limpopo, and the maximum standard
deviation of the temperature seasonal average is 4.19 in the province of KwaZulu-Natal),
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Egs. (15) and (16) can be re-written:

d"g;(t) = P'(t) = mw'(t) (17)
dHI(t) ,

o = A'(t) - (v+u)H| (1) (18)
with
A'() = bu' () (19)

Given monthly malaria case incidence anomalies A’ and monthly precipitation anoma-
lies P’, we sought to fit parameters m and b. To this end, Eq. (17) was integrated
numerically with a given value of m through a finite difference approach to yield soil
water content levels over time, w'(t), and parameter b was then estimated through lin-
ear regression (Eq. 19). Calibration was performed by using the differential evolution
adaptive Metropolis (DREAM) algorithm (Vrugt et al., 2008), yielding best fit values for
parameters b and m along with their posterior probability density functions. Our expec-
tation is that b is positive (anomalously high water soil content should have a positive
effect on mosquito growth rate) and that the rate of soil water loss m is on the order of
0.3-0.5 months ™" (Katul et al., 2007a). To yield predictions of monthly malaria cases
(Fig. 3), malaria case anomalies A’ were first estimated (given the best fit parameter
values b and m) and then added to the seasonal averages in malaria case numbers A.
The third way we assessed the association between climatic drivers and malaria
cases built on a stochastic model to reduce the uncertainty in model fitting through
statistical efficiency. Specifically, we used a transfer function model, i.e. a linear filter of
the climatic variables to predict malaria cases. The model was conceived by mimicking
the relationship suggested by the eco-hydrologic model (Egs. 17 and 19 above).
Given that the time series of monthly malaria cases A and monthly rainfall levels P
both showed a seasonal pattern in their standard deviations, making the time series
heteroscedastic and limiting robust parameter estimation, we adopt a transfer function
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model of the form:

w!' =P’ +nw/ (20)

Al = dw! (21)

where double prime signs indicate that the variables are normalized with respect to
their seasonal standard deviation. Equation (20) describes soil moisture anomaly
at month / as rainfall anomaly plus a portion of the previous month anomaly, while
Eq. (21) is analogous to Eq. (19). Parameters d and n are conceptually similar to b
and m, and are estimated with the same genetic optimization algorithm as detailed
above. Again, we expect that d is positive. To yield predictions of monthly malaria
cases using this transfer function model (Fig. 3), malaria case anomalies A" were es-
timated (this time given the best fit parameter values d, and n), denormalized with
respect to standard deviations and, as before, added to the seasonal averages in

malaria case numbers A. To check statistical consistency, transfer function model resid-
uals were tested against Gaussianity, homoscedasticity, and independence, using the
Kolmogorov-Smirnov, Bartlett and Portmanteau test, respectively.

Figure 4 shows the posterior probability distributions for the parameters of both mod-
els applied to the Mpumalanga data. It can be seen that calibration converged to well
defined optimal values. On the other hand, parameter uncertainty is significant.

3 Results and discussion

The seasonal component of malaria dynamics explained on average 41 % of the vari-
ability in cases (Table 1). None of the linear regressions between deseasonalised
climate forcing and deseasonalised malaria cases explained significant variability in
malaria case anomalies, resulting in at most a Nash efficiency (Nash et al., 1970) of
14 % for the rainfall-malaria correlation with a zero month time lag in the province of
KwaZulu-Natal (Table 1). Introducing time lags did not improve the results. These
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results indicate that a direct and linear association between climatic variables and
malaria dynamics is not statistically supported, beyond seasonal effects.

We therefore considered whether soil water content dynamics may be associated
with malaria case anomalies. The eco-hydrologic model was able to explain a signifi-
cant fraction of the variation in malaria cases in all three provinces (Fig. 3 and Table 1).
Furthermore, the parameter estimates of the eco-hydrologic model, including the slope
of the regression between soil water content anomalies and malaria case anomalies,
are biologically and physically interpretable (Table 2). Estimates of the parameter m,
the rate at which soil water is lost, yielded values between 0.1 and 0.44 months‘1, al-
though the related 95 % confidence limits, also shown in Table 2, show the presence of
significant parameter uncertainty. This result was expected in view of the values of the
explained variance. The optimal parameter values translate in soil water transit times
of 2—10months, which highlight the persistence of perturbations induced in malaria
cases by higher than usual precipitation. 95 % confidence limits of the transit times
allows one not to reject the hypothesis that they are identical in all the three locations.
Values of the soil water loss rate m between 0.3 and 0.5 months ™' are comparable with
estimates from other systems (Katul et al., 2007a), while the smaller estimate of this
parameter for Limpopo suggests the possible presence of a biological delay in the dis-
ease dynamics not explicitly considered here (Pascual et al., 2008; Hay et al., 2000).
As a whole, from a physical perspective, these results suggest that unusually wet pe-
riods result in anomalously high surface and soil water storage, and thereby higher
mosquito densities, ultimately yielding anomalously high malaria case numbers.

In our eco-hydrologic model, all of the delays between favorable environmental con-
ditions and malaria incidence are assumed to be induced by soil water dynamics. This
is consistent with observed biological delays (in both the mosquito population and in
disease dynamics) that are shorter than a month (e.g. Chitnis et al., 2008), while the
memory induced by surface water storage is generally longer (e.g. Katul et al., 2007a).
The proposed simplified model neglects compound delays and nonlinear interactions
that might result in long delays between climatic forcing and malaria cases (Pascual
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et al., 2008; Hay et al., 2000). Our results are therefore likely to underestimate sur-
face water loss rates m to some degree, since we attributed all physical and biological
delays to soil water content dynamics alone.

For the transfer function statistical model, first note that we expect different parame-
ter values because deseasonalisation of standard deviation was carried out. However,
the resulting transit times are consistent with those obtained with the eco-hydrologic
model. The results show that the hypotheses of Gaussianity and homoscedasticity of
the residuals cannot be rejected at the 95 % confidence level in all three of the time
series, therefore providing support for the assumption of model linearity. On the other
hand, all the residuals exhibited the presence of a slight but still statistically significant
correlation (at the 95 % confidence level). This outcome is due to the inability of the
model and the selected climatic determinants to fully account for the persistence of
the malaria case anomalies. Such persistence could presumably be accounted for by
other factors; however, this would introduce more parameters and thus uncertainties in
their estimation. Alternatively, the residual correlation could be eliminated introducing
a further autoregressive component in the regression model to account for previous
malaria cases, which would summarize the effects of the additional inputs above (see,
for instance, the approach adopted by Zhou et al., 2004). However, this solution was
not used here because it induces equifinality, therefore hindering the efficient identifica-
tion of the causal relationship between rainfall/soil water content and malaria. Looking
at the statistical model performance (Table 1) one can see that they are comparable
with those of the eco-hydrologic model, with some differences depending on location.

4 Conclusions

Through an application to time series of malaria cases from three South African provinces,

we showed through two sets of analyses — the eco-hydrologic model and the transfer
function model — that soil water content is an important driver of malaria dynamics.
These analyses required a series of consecutive assumptions to be made in order
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to interface these models with the climate data and malaria data that were available.
Nevertheless, we found a statistical association between modelled soil water content
and malaria cases in all three provinces, with parameter estimates that were biologi-
cally and physically interpretable. Future work, with more extensive time series, should
therefore focus on coupling soil water content dynamics to full epidemiological models
(Egs. 1-4), which require a larger number of parameters, but that maintain the non lin-
ear feedbacks that are known to be important for malaria dynamics in endemic regions
(Koelle and Pascual, 2004; Pascual et al., 2008; Laneri et al., 2010).
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Table 1. Nash efficiencies for the seasonal component of malaria dynamics, the eco-hydrologic
model, and the transfer function model for the three South African provinces of Mpumalanga,

Limpopo and KwaZulu-Natal.

Equation Mpumalanga Limpopo KwaZulu-Natal
Seasonal cycle 0.496 0.388 0.337
Rainfall-malaria correlation
(0 month time lag) 0.117 0.027 0.140
(1 month time lag) 0.027 0.033 0.125
Minimum temperature-malaria correlation
(0 month time lag) 0.016 0.005 0.026
(1 month time lag) 0.046 0.001 0.069
Ecohydrologic model (17)-(19) 0.351 0.160 0.313
Seasonal+ecohydrologic 0.674 0.491 0.545
Transfer function model (20)—(21) 0.351 0.190 0.156
Seasonal+transfer function 0.752 0.454 0.569
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Table 2. Best set of model parameters (and 95 % confidence level) of the eco-hydrologic and

transfer function models for the three provinces illustrated in Fig. 1.

Model Parameter Units Mpumalanga Limpopo KwaZulu-Natal

Eco- m month™ 0.442 (0.164 +0.780) 0.107 (0.063 +0.359) 0.267 (0.180 + 0.551)
hydrologic model b cases mm~ ' month™"  2.697 (1.394 +3.686) 0.673 (0.338+1.135) 8.855 (5.457 + 13.393)
Transfer function n - 0.916 (0.726 + 0.945) 0.871 (0.698 + 0.931)  0.745 (0.103 + 0.864)
model d - 0.145 (0.108 +0.311)  0.242 (0.131+0.362) 0.214 (0.074 + 0.449)
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Fig. 1. Map of the investigated provinces in South Africa, colored by level of malaria risk. The
locations of the weather stations for each province are marked with black triangles (see: http:

/lwww.malaria.org.za/Malaria_Risk/Risk_Maps/risk_maps.html).
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Fig. 2. Monthly malaria cases and rainfall levels for (A) Mpumalanga, (B) Limpopo, and (C)
KwaZulu-Natal provinces. Insets, seasonal averages of malaria cases and rainfall levels(time

proceeds according to the arrows).
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Fig. 3. Observed and modeled monthly malaria incidence for (A) Mpumalanga, (B) Limpopo
and, (C) KwaZulu-Natal provinces. Observed incidence is shown alongside seasonal averages,
case estimates form the eco-hydrologic model, and case estimates from the transfer function

model. Insets are scatter plots of soil water content anomalies against mala

ria case anomalies

for each province (dots, observations; solid lines, modeled relationships using (Eq. 17 and 19).

Best fit parameters are reported in Table 2).
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Fig. 4. Posterior parameter distributions for (A) eco-hydrologic and (B) transfer function models
at Mpumalanga. 95 % confidence bands for the parameters are given in Table 2.
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